
Akademy 2009 ~ Technical Papers

Semantic Context Menus in KDE
Laura Drǎgan

Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway (NUIG)

laura.dragan@deri.org

Siegfried Handschuh
Digital Enterprise Research Institute (DERI)

National University of Ireland, Galway (NUIG)
siegfried.handschuh@deri.org

ABSTRACT
The Semantic Desktop brings the desktop data to a
standardized form, enabling it to be better interlinked and as
a result easier to browse and search. It is lifted from
application specific formats and locations and made
available to all the desktop applications. However, some
applications might be better suited to display some resource
types than others, or might provide specialized functions.
Rather that duplicating those function, tools could just call
them from the tool that provides them, if they were made
available just like the data, in a standardized form. We
propose a way for applications to advertise their
functionality in a semantic way.

GENERAL TERMS AND KEYWORDS
Semantic Desktop, ontology

INTRODUCTION
Nepomuk-KDE [8] provides the framework for
semantically enabled applications on the user's desktop.
The central RDF\cite{rdf} repository is a central access
point for semantic data to all the applications on the desktop
- to store or to use.

A semantic application can, according to its functionality,
create resources and store them in the RDF repository
and/or create or edit properties of existing resources as well
as relations between existing resources. However, the data
from one application might be more appropriately used
(visualized, edited, etc.) by another application from the
desktop, like for instance showing contact information from
a text file in the address book, where the data is better
grouped and displayed. By not using the data in the best
way possible, information is lost and meanings are hidden,
therefore it is important that the user is made aware of all
the possibilities available for the resources she is handling.

We propose a method for applications to advertise their
capabilities in a semantic way. This implies that they
register in the RDF repository the types of resources they
can handle, and the actions they can perform. For this
purpose we define an ontology for applications and actions.
The ontology however is not sufficient, we also need a way
for applications to use it, and a way for the system to be
automatically kept up to date with the possible changes that
might occur when applications are installed or deleted or
upgraded.

Having the applications and actions data in RDF is still not
sufficient for other semantic applications to use it. We
provide a library for easy use of the new data available and
we use our semantic note-taking tool SemNotes [7] as
testing ground of our solution.

Related Work
In KDE, the KRunner application suggests possible actions
available for text queries given by the user. It is however a
tool for searching and launching files and applications by
the user, and it is not suitable to be used in other tools.
There exists a Nepomuk plugin for KRunner which
provides search of Nepomuk resources and suggestions for
possible actions for the results, but it does this using the
mimetype of the resource, and hence it will not show a
complete list of possible applications.

In Nepomuk-KDE, there is a plugin-based tool for
annotation of resources. It has a Konqueror plugin that
allows the annotation of web pages as well as resources
opened with the nepomuk:/ protocol and also a Dolphin
plugin for annotation of files. At the moment there are
plugins for annotating web pages, files, personal
information entities, for tagging, for relating resources to
projects, or geographic resources with geonames. The
AnnotationPlugins are described by desktop files having
specific properties:

...

[PropertyDef::X-KDE-NepomukProperties]

Type=QStringList

[PropertyDef::X-KDE-NepomukResourceType]

Type=QStringList

[PropertyDef::X-Nepomuk-ResourceTypes]

Type=QStringList

The tagging plugin is described by a desktop file containing:

...

X-KDE-NepomukProperties=nao:hasTag

X-KDE-NepomukResourceType=nao:Tag

we can tag everything

X-Nepomuk-ResourceTypes=*

Like our approach, the annotation service and plugins use
the existing Nepomuk desktop ontologies in the desktop
files that describe the plugins.

1

July 3 to 11 2009 ~ Las Palmas, Gran Canaria, Spain

Akademy 2009 ~ Technical Papers

THE NEPOMUK APPLICATION AND
SERVICE ONTOLOGY
We define and use an ontology to store information about
the applications and services that are installed on the
system. By adhering to this ontology, each application
advertises the functions it provides. The ontology is still
under community development at [6]. The Nepomuk
Application and Service Ontology (NASO) is one of the
Nepomuk ontologies, developed for the Nepomuk Semantic
Desktop. It defines the classes Application and Service,
where an application is considered to be a service with an
user interface. Services and applications provide actions
defined in the class Action. The main classes of the
ontology and the way they are linked, as well as their key
properties are shown in Figure 1.

Each Action instance is tied to the application or service
that provides it. Each action is identified by a name (which
does not have to be unique). Parameters are required to
execute an action. There can be any number of parameters
for an action. The parameters have a delegated/assigned
type of resource they stand for. Actions can create resources
as well as delete them; they can change resources or leave
them unchanged after the action is executed. We define
three subclasses of the class Parameter: InParameter
represents a parameter that is not altered by the action;
OutParameter represents a parameter that does not exist
before the action is executed, and is created by it;
InOutParameter represents a parameter that is modified by
the action (this also includes deleting the resource).

Desktop Files
NASO is installed together with the rest of the Nepomuk
ontologies [3] and is loaded when Nepomuk starts.
Whenever a new application or service is installed on the
system, the corresponding instances are added to Nepomuk.

The application developers must define the actions that
their application provides. This can be done in the desktop
file of each application or service.

The desktop file is a configuration file that specifies how a
particular program is to be launched, how it appears in
menus, etc [2]. Therefore it is suitable that this file should
contain also the actions provided by the application it
describes.

Have a desktop file for each action defined by the
application. The desktop file would have the type
NepomukAction. We define the type with the service type:

[Desktop Entry]

Type=ServiceType

X-KDE-ServiceType=NepomukAction

Comment=Nepomuk Action

[PropertyDef::X-KDE-Nepomuk-Action-In-Types]

Type=QStringList

[PropertyDef::X-KDE-Nepomuk-Action-Out-Types]

Type=QStringList

[PropertyDef::X-KDE-Nepomuk-Action-In-Out-Types]

Type=QStringList

[PropertyDef::X-KDE-Nepomuk-Action-Name]

Type=QString

Our note-taking application SemNotes [7] provides the
actions of creating and tagging a note. We define the action
of creating a note in the desktop file:

[Desktop Entry]

Type=Service

Name=Create blank note

2

July 3 to 11 2009 ~ Las Palmas, Gran Canaria, Spain

Figure 1: NASO main class

Akademy 2009 ~ Technical Papers

Comment=Create a blank note

X-KDE-ServiceTypes=NepomukAction

X-KDE-Nepomuk-Action-Name=semnotes-create-note

X-KDE-Nepomuk-Action-Out-Types=pimo:Note

There are no parameters required to execute the action,
therefore no InParameters or InOutParameters need to be
set.

For the tagging of a note action, the required parameters are
an existing note resource and an existing tag resource. We
define the action in the desktop file:

[Desktop Entry]

Type=Service

Name=Tag Note

Comment=Tag a note

X-KDE-ServiceTypes=NepomukAction

X-KDE-Nepomuk-Action-Name=semnotes-tag-note

X-KDE-Nepomuk-Action-In-Types=nao:Tag

X-KDE-Nepomuk-Action-In-Out-Types=pimo:Note

There are no OutParameter types listed because there are no
new resources created by the action. The action of tagging a
note (existing note, and existing tag) will result in the
creation of a new triple in the Nepomuk RDF repository, of
the form:

<note URI> <nao:hasTag> <tag URI>

We choose to consider that only the note is altered by the
action in this case, although the triple newly created has the
tag as object. We will consider that only the resources that
appear as the subject of a triple that is created, changed or
removed are considered to be modified by the action and
therefore only their types should appear in the list of
InOutParameters. Resources that appear as objects of those
triples are not considered to be modified, and therefore their
types should be listed as InParameters. In this example,
there are no types that should appear in the OutParameters
list, since there are no new resources created by the action,
therefore the line is omitted from the desktop file.

There are several other actions provided by the application.
Each has to be described in its own desktop file, with the
corresponding parameters and names. The actions are then
listed in the application's desktop file by adding a new
property:

X-KDE-Nepomuk-Actions=semnotes-create-
note;semnotes-tag-note;

An alternative is to create the link from the action to the
application that provides it, instead of the other way around.
It implies having a link to the application in the desktop file
describing the action. This can be done in the file hierarchy,
by having all the actions provided by a given application in
the same folder having the application name. However, this

method is restrictive and error prone. A more flexible
solution is to link to the application by adding a new
property in the desktop file of the action.

X-KDE-Nepomuk-Action-Provided-By=SemNotes

This option also allows us to reuse actions for several
applications, in the case when the parameters match, by
adding several applications in the list, therefore this is the
better solution and the one we chose to implement.

The Nepomuk ActionLoader Service
Having all the actions provided by applications and services
described in their respective desktop files, and the NASO
ontology loaded in the system is not enough. We need a
service that assures that all the newly defined actions are
read and loaded, as well as checking for changes of existing
actions. The system relies highly on Nepomuk, therefore it
is natural that the needed service is a Nepomuk Service [9].

The ActionLoader service will be started automatically by
the Nepomuk Server. It provides monitoring and on
demand loading of actions. It depends on the storage
service because the data about the actions is stored as RDF
in the central repository. The two actions defined above are
stored as:

<nepomuk:/app_semnotes>

a naso:Application ;

nao:prefLabel "Semantic Notes"^^xsd:string ;

naso:provides <nepomuk:/action_create_note .

<nepomuk:/action_create_note>

a naso:Action ;

nao:prefLabel "Create blank note"^^xsd:string ;

rdf:comment "Create a blank note"^^xsd:string ;

nao:identifier "semnotes-create-
note"^^xsd:string ;

naso:providedBy <nepomuk:/app_semnotes ;

naso:hasParameter <nepomuk:/create_note_param> .

<nepomuk:/create_note_param>

a naso:OutParameter, naso:Parameter ;

naso:resourceType pimo:Note .

<nepomuk:/action_tag_note>

a naso:Action ;

nao:prefLabel "Tag note"^^xsd:string ;

rdf:comment "Tag a note"^^xsd:string ;

nao:identifier "semnotes-tag-note"^^xsd:string ;

naso:providedBy <nepomuk:/app_semnotes> ;

naso:hasParameter <nepomuk:/tag_note_param1>,

<nepomuk:/tag_note_param2> .

<nepomuk:/tag_note_param1>

a naso:InParameter, naso:Parameter ;

3

July 3 to 11 2009 ~ Las Palmas, Gran Canaria, Spain

Akademy 2009 ~ Technical Papers

naso:resourceType nao:Tag .

<nepomuk:/tag_note_param2>

a naso:InOutParameter, naso:Parameter ;

naso:resourceType pimo:Note .

THE ACTION QUERY SERVICE
Once the information about the possible actions is available
in the local RDF store, it can be queried and used by
applications which want to use the framework for providing
new features of aggregation with other services. For this,
each application can use the Nepomuk libraries, which
provide access to the local RDF repository as well as
querying functions [5]. However, because a large part of the
usage will most likely be related to finding actions, there
will be a lot of code duplication by various applications. To
prevent this, we created a service called "ActionQuery" that
retrieves the action data and presents it to its clients. The
functions provided by the service return lists of actions
(QList<Action>, where Action is a class representing the
naso:Action type).

allActions();

actionsByName(QString); [or QRegExp]

actionsByApplicationName(QString);

actionsByApplicationUri(QUrl);

actionsByInParameterType(Nepomuk::Types::Class,
bool);

actionsByOutParameterType(Nepomuk::Types::Class,
bool);

actionsByInOutParameterType(Nepomuk::Types::Class,
bool);

actionsByParameterType(Nepomuk::Types::Class,
bool);

actionsByParameterTypes(QList<Nepomuk::Types::Clas
s>, bool);

actionsForResource(Nepomuk::Resource, bool);

actionsForResources(const
QList<Nepomuk::Resource>, bool);

The names of the functions are suggestive regarding the
actual functionality they provide. The service allows
searching by the action names or by the application that
provides them. Actions can have more than one parameter,
so the functions searching by a certain type of resource as
In, Out or InOut parameters also have a boolean parameter
selecting whether the query should be restricted only to
actions that match exactly. If the parameter is set to false,
the function returns all actions that match the condition,
including the ones that have other parameters that do not
appear in the list given. Accordingly, the search by a list of
parameter types will return all the actions that match
exactly all the types given if the boolean parameter is set to
true, or include the actions that have more parameter types
than the ones requested for, when the boolean parameter is
set to false. Searching by a specific resource will call the

search by parameter type, with the type of the given
resource.

When searching for actions by parameter type, we also take
into account the inheritance relation between RDF classes.
For instance if an action takes as parameter a resource of
type Contact, it will be returned when searching for actions
that take as parameter any of the subclasses of class
Contact: PersonContact and OrganizationContact.

Having the actions that match a query, applications can use
them as factories to create specific instances for specific
resources. For an action instance to be run, all parameters
should have a resource value assigned to them of the
required type. Taking for example the "Tag note" action
described earlier, we must assign both parameters to
specific resources of type Note and Tag respectively. If a
specific note and a tag are give, there is only one possible
action that has to be generated. However, if only one of the
two required resources is given, the other can be filled in by
querying the RDF repository for all the resources of the
required type. If the note to tag is given, but not also the
tag, we can create as many possible actions as there are tags
in the RDF store. If the tag is given but not the note, we will
have as many possible actions as there are notes in the
system. The algorithm works the same for any number of
required parameters, ignoring of course the OutParameter
types, for which the corresponding resources will be created
only after the actions are executed.

Semantic Context Menus in SemNotes
We use our semantic note-taking application SemNotes to
showcase the ActionQuery Service and the use of actions
provided by external tools. We enhance the context menus
in SemNotes with actions provided by other applications.

SemNotes is a semantic note-taking application that
automatically identifies the resources mentioned in the text
and links them to the note. The linking is done on two
levels. The text identified as representing an existing
resource is transformed in a link to the corresponding
resource URI. Also, a RDF triple is created in the repository
connecting the note to the resource. The user can select the
types of resources that she wants to be identified and linked
in the notes. All types of resources available in the
repository can hypothetically be linked, but only linking
some of them adds value to the user. For instance linking a
tag in the text is not necessary, because the application
provides a tagging function.

Having the resources ready identified in the text of the note,
we propose to make the user aware of the possible actions
that can be performed on them. We do that by using context
menus to list the actions that can be taken. This way, the
possibilities are presented on request, therefore not
disrupting the user activity.

According to the KDE Usability Project [1] context menus

4

July 3 to 11 2009 ~ Las Palmas, Gran Canaria, Spain

Akademy 2009 ~ Technical Papers

are ``menus called by user interaction that provide a set of
commands related to the context of where the interaction
takes place within the interface object. They offer only
items that are applicable or relevant to the object or region
at the location of the focus or the pointer.'' We modify the
common understanding of the term by not considering just
the actions possible in the environment of the current/active
application (from which the menu is called), but the actions
possible in all (or most) of the applications that support
actions on the selected resource. The semantic context
menus should be activated only when the object is
identified as an existing resource in the RDF repository. It
can further be restricted so that the menu is activated only
for some of the available types of resources. In the
LinkedEditor of SemNotes, the resources identified in text
are transformed automatically into links that point to the
URI of the resource, therefore it is when these links are
selected that we build the enhanced context menus.

To build the menu for a selected resource in the note, we
use the ActionQuery service to retrieve the actions that
work on it. Furthermore, we need only the actions that have
exactly one required parameter. One type of these actions
are the "Open with .." actions that should be provided by
most applications for the types of resources they work on.
We call the function:

actions = actionQuery.actionsForResource(resource,
true);

We created a SemanticContextMenu class that creates the
list of QActions that would then be added to the default
context menu of the editor window. Its function

QList<QAction*> processActions(Nepomuk::Resource,
QList<Action>);

takes as input the list of Actions returned by the
ActionQuery service and returns the menu items to be
appended to the context menu. Because on Nepomuk-KDE
any kind of resource can be tagged, rated or commented, we
also chose to add these actions to the context menu (see
Figure 2). Tagging is an action that requires 2 parameters,
the resource being tagged and the tag. The resource is set,
when the context menu is generated, but the tag parameter
has to be filled in by us. Generating the menu items for
tagging the resource with all the existing tags can lead to a
very long list of menu items which would make it very hard
to use. Hence, we chose to make the standard metadata
menu items open dialogs for data input by the user. This
approach, although not optimal, is satisfactory.

CONCLUSION AND FUTURE WORK
In this paper we presented a way for applications to
advertise their functionality in a semantic form. We devised
an ontology for describing the possible actions of
applications. Further, we present a desktop file system and
a service for populating the ontology and keeping the
information up to date. Having the data in RDF format and
available to all the tools from the desktop is however not
enough, we need a way to query and use the data easily.
The ActionQuery library provides the means for developers
to aggregate functionality from other applications in their
tool. We demonstrate the use of the system for providing
semantic context menus in our semantic note-taking
application SemNotes.

In the current implementation we consider actions taking as
parameters only resources. However, there is the possibility
of actions having simple types as parameters, like strings,
integers or boolean values. Adding simple types as
parameters is not a trivial extension of the system, but it is
important. Possible actions with simple types as parameters
include changing property values of resources, creating new
resources of certain RDF types starting from given basic
values.

Another interesting direction is pipe-lining of actions. That
means using the output of one action as input for another
action, like in Unix pipes.

ACKNOWLEDGEMENTS
The work presented in this paper was supported (in part) by
the Líon-2 project supported by Science Foundation Ireland
under Grant No. SFI/08/CE/I1380 and (in part) by the
European project NEPOMUK No FP6-027705.

We would like to thank Sebastian Trüg and Charlie Abela
for the insightful discussions on the subject of this paper.

5

July 3 to 11 2009 ~ Las Palmas, Gran Canaria, Spain

Figure 2: Context menu additions from naso: Actions plus
tagging, rating, and comments.

Akademy 2009 ~ Technical Papers

REFERENCES

1. Context Menu. http://techbase.kde.org/Projects/Usability/
HIG/SOU_Workspace/Context_Menu

2. Desktop Entry Specification.
http://standards.freedesktop.org/desktop-entry-spec

3. NEPOMUK Ontologies.
http://www.semanticdesktop.org/ontologies/

4. Resource Description Framework (RDF).
http://www.w3.org/RDF/

5. The Nepomuk Meta Data Library. http://api.kde.org/4.x-

api/kdelibs-apidocs/nepomuk/html/

6. Nepomuk Application and Service Ontology, 2009.
http://dev.nepomuk.semanticdesktop.org/wiki/NasoOntol
ogy

7. L. Dragan. SemNotes. http://smile.deri.ie/projects/semn

8. S. Trueg. Nepomuk - The Social Semantic Desktop.
http://nepomuk.kde.org/

9. S. Trueg. Nepomuk Services.
http://techbase.kde.org/Development/Tutorials/Metadata/
Nepomuk/NepomukServices

6

July 3 to 11 2009 ~ Las Palmas, Gran Canaria, Spain

http://techbase.kde.org/Projects/Usability/HIG/SOU_Workspace/Context_Menu
http://techbase.kde.org/Projects/Usability/HIG/SOU_Workspace/Context_Menu
http://techbase.kde.org/Development/Tutorials/Metadata/Nepomuk/NepomukServices
http://techbase.kde.org/Development/Tutorials/Metadata/Nepomuk/NepomukServices
http://nepomuk.kde.org/
http://smile.deri.ie/projects/semn
http://dev.nepomuk.semanticdesktop.org/wiki/NasoOntology
http://dev.nepomuk.semanticdesktop.org/wiki/NasoOntology
http://api.kde.org/4.x-api/kdelibs-apidocs/nepomuk/html/
http://api.kde.org/4.x-api/kdelibs-apidocs/nepomuk/html/
http://www.w3.org/RDF/
http://www.semanticdesktop.org/ontologies/
http://standards.freedesktop.org/desktop-entry-spec

