
Akademy 2009 ~ Technical Papers

The Unusual Suspect:
Layouts for sleeker KDE applications

Eduardo Madeira Fleury
openBossa/INdT
Recife, PE, Brazil

eduardo.fleury@openbossa.org

Caio Marcelo de Oliveira Filho
openBossa/INdT
Recife, PE, Brazil

caio.oliveira@openbossa.org

ABSTRACT
This paper complements the homonimous talk presented at
Akademy 2009. It covers flexible layouts, self-animated
layouts and animation between different layouts, recent
features we have been developing for Qt framework,
together with Qt Software. Subjects include the use cases
that drove us, implementation constraints we had, APIs,
usage and the benefits that arise from the use of such
technologies.

GENERAL TERMS AND KEYWORDS
Flexible Layouts, Custom Layouts, Layout Animation,
Declarative UI

INTRODUCTION
The Qt framework has in its graphics subsystem the notion
of Layouts, which are entities responsible for arranging the
visual elements, usually Widgets or other Layouts, on the
screen.

A given Widget can delegate the arrangement of its
children widgets to a certain Layout, this delegation is
referred as installing the layout on the widget. By moving
the arrangement logic into a separate class, it becomes
possible t Layouts o reuse that logic in different contexts,
for different Widgets and children.

It is not enough to install the layout in the widget, it is also
needed to add the items to the layout, since the layout may
need more parameters to know how to arrange the items
(for example, the position on a grid).

The objective of this article is, first, to describe our
explorations of the Layout idea:

1. Implementation of a different and powerful layout,
based on the idea of anchoring sides of children to
each other.

2. The use of Custom Layouts to create specific interfaces
from Interaction Designers specifications.

3. The animation of screen states using layouts.

And second, to illustrate how these enhanced uses of
layouting can be used to improve KDE and Qt applications,
making them not only more beautiful but also keeping the
benefits of layout usage.

Layouts in Qt
In the framework there are two families of visual elements,
Qwidget which represents the traditional Qt GUI
elements, and QgraphicsWidget, built on top of the
Graphics View system. In this article, we'll assume the
Graphics View family of widgets and its base layout class,
QGraphicsLayout, since our concrete work is built on
that. However most of the discussion is also valid for
traditional family of widgets.

In Qt 4.5 (the latest release as of today), there are two
different basic layouts implemented in the Graphics View
system: QGraphicsLinearLayout, which essentially
arranges the items side by side (or vertically one on top of
the other), and QGraphicsGridLayout, which allow a
more complex arrangement based on a table-like structure.
Curiously the linear layout is implemented using the same
engine as for the grid, but providing a simpler API.

Layouts in KDE
Applications in KDE make use of the existing layouts in Qt,
but for specific user interfaces, some custom-made layouts
were developed. For QWidget, most of the layouts are
variations of Flow Layout example in Qt, which arranges
the items in a similar way to the one in which words are
arranged in a paragraph or items are arranged in a HTML
page.

The Graphics View subsystem has a few different layouts
implemented, most of them as part of Lancelot [9], the most
interesting of them is the NodeLayout, which will be
explained better in the next section.

As of today, there is no work related to animation based on
layouts, in neither of the senses that we are going to explain
in this text: animation inside a custom layout or animation
between two layouts.

FLEXIBLE LAYOUTS
Flexible layouts are layouts in which most of the behavior
is configured after the creation of the layout. In other
words, part of the implementation of how the items are
going to be arranged is done by calling methods on the
layout object.

With an API to configure the items in the layout it is

1

July 3 to 11 2009 ~ Las Palmas, Gran Canaria, Spain

Akademy 2009 ~ Technical Papers

possible to make high level tools usable by designers. This
makes it possible for them to setup the application layouts
rather than requiring a C++ developer for that task.

A Flexible layout is more a tool to build layouts than a
ready to use layout (which you just add and remove items).
Note that this classification is not ``all or nothing'', for
example, the QGraphicsLinearLayout can be used
by just adding the items, but also have some parameters
configured, like margins and item spacings.

Concrete Implementations
There are different implementations of this Flexible layout
idea. One example, outside Qt and KDE, is the Edje
layouting mechanism. Edje is part of the Enlightenment
Foundation Libraries [10], a set of lightweight libraries
used for E17 window manager and also many embedded
applications.

Edje layouting is done by defining a set of areas defined by
coordinates relative to the parent widget1 or to other areas in
the layout. Edje also has support to define different states to
those areas.

Then items can be added to those areas, in most cases
images, widgets from other existing libraries and other Edje
layouts. For many interfaces that we dealt with, this proved
to be more effective than mapping the designer's mockups
into vertical and horizontal boxes.

A similar layout present in KDE codebase is the
NodeLayout used in Lancelot. The idea is that you add
items with a pair of \textit{nodes} which are points
representing the top-left and the bottom-right corners. It is
simpler than Edje, in the sense that the nodes can be
specified relative to the parent widget, but not relative to
other nodes.

Anchor Layout
Another example of Flexible layout is the
QGraphicsAnchorLayout, a layout that is being
developed by openBossa together with Qt Software and
should be integrated at the Qt main repository soon. Its
development was motivated by two main goals: to provide
a way of designing layouts that is accessible to UI designers
and to act as a powerful layout for applications that
currently set their geometries manually or with a series of
simpler layouts.

In most cases, one Anchor Layout can substitute a series of
nested Vertical and Horizontal linear layouts, the layouts
that are normally used to build complex arrangements of
items on the screen.

An anchor layout is based on two concepts: anchorage

1This terminology is not exactly the one used by Edje developers,
but the analogy holds. In Edje the layout itself also acts as the
parent widget.

points and anchors. The former are special points each item
have (right, left, top and bottom edges, as well as its
center). The latter represent links between two anchorage
points and can be created from one item to another, or from
one item to the layout frame itself. The logic is the same for
vertical and horizontal anchoring, so we'll illustrate only
one dimension.

For example, one can anchor the right side of item A with
the left side of item B. So when the layout set the geometry,
one restriction that the layout will respect is that the two
items are glued together. In other words, the layout will
enforce that the distance between these two edges is equal
to the length of the anchor created between them.

It follows that anchoring the item to the layout in both
sides, will make the item grow together with the layout.
This property allows us to configure the items in a way they
will scale, which is a desired property for a Qt layout.

Linear programming
There are other implementations of anchor-based layouts in
other libraries but our understanding is that most of these
have limitations that prevent them from being used by end
users. Some like Java's SpringLayout seems to work as a
tool for layout designers to use as their engine. Others while
targeted at the end user, require too much concern from him
with regard to the way the anchors are created. In many
cases a slightly misplaced anchor leads to a situation where
the layout is unable to calculate its geometries.

Given that experience, when developing an AnchorLayout
for the Qt framework, we decided we would like a layout
that were both robust and easy to use.

While such a flexible layout provides countless possibilities
to the users, it also allows them to fall into linear
dependencies, inconsistent setups and other corner-cases
that could risk the whole user experience. Avoiding such
situations was an obstacle the implementation of such
layout had to deal with.

An anchor layout is fun to use as long as the user does not
have to worry about

anchor dependencies or the order in which he creates them.
That meant the layout itself could not make hard
assumptions of how would the anchors be created and
instead, it had to be solid enough to withstand some sort of
abuse by those creating the anchors.

Given such situation, we decided to use a Linear
Programming approach to optimize the distribution of the
items. From the items and anchors the layout identifies its
constraints and its objective function which are then passed
to a Linear Programming solver. While that might seem as
an implementation detail, it explains why
QGraphicsAnchorLayout handles anchor setups that
cause similar layouts to fail.

2

July 3 to 11 2009 ~ Las Palmas, Gran Canaria, Spain

Akademy 2009 ~ Technical Papers

CUSTOM LAYOUTS
Another important family of advanced layouts are those we
call Custom. In opposition to the very versatile layouts we
talked about earlier, these are rather specific classes,
tailored to the very special needs of each situation.

When comparing the two families of layouts, there is no
answer to the question regarding which one is the best.
Instead, the idea is to understand the differences between
them so the right tool for the right task can be used.

Creation
Important differences exist between Flexible and Custom
layouts, among those is the different creative processes that
are associated to each one of them. The creative process for
Custom layouts is different because each Custom layout is
implemented as a layout class of its own. This means that is
not possible to instantiate a ready-made layout and
configure it as we did with AnchorLayout, for instance.

As before, the high level ideas come from the designers.
Usually though, those are not able to use standard
programming languages to implement the actual layout
classes. This means that developers must collaborate in this
creative process.

Developers must come up with a procedural method for
calculating the geometries of the items on the screen, based
on the designers feeling of what is beautiful. In other words,
they must come up with an algorithm to model their way of
thinking.

The algorithm is then implemented in the form of a layout
engine. This is usually harder and more costly than
allowing the designers to configure existing layouts. As an
example, we could have a high level tool to help designers
create the anchors for an AnchorLayout, while for custom
layouts, C++ knowledge is required.

Usage
While the creation of a Custom layout can be complex, it
pays itself in some situations.

The first advantage is that once a Custom layout class is
created, it can be used like a ready-made Qt layout. All that
is needed is to instantiate the class and add items, then its
up with the engine to do its job.

Furthermore, depending on the way the engine was created,
the addition and removal of items is straightforward.
Simply add or remove the items and it works out of the box.
Compare that to the use of AnchorLayout, in that case new
Anchors would have to be created each time an item was
added.

Finally, it is interesting to use specialized layout engines
when the desired behavior has a complexity that goes
beyond the boundaries of what Flexible layouts can do.

For instance, in the Canola Layout example [5] the addition

or removal of an item triggers a complete change in the
layout organization. In this case it was easier to create an
appropriate engine than to deal with creation and
destruction of several anchors each time an item was added
or removed.

Animations
The Canola Layout example shows another feature that is
often a requirement in applications with rich UI (user
interfaces) – animations. Designers can ask developers to
animate the addition of items, their removal and finally,
changes in their position.

When creating Custom layouts, it is easy to add such
animations, and further than that, it is easy to keep the dirty
work inside the layout class itself. By keeping all the magic
hidden, we ensure that users only have to worry about
using the layout, nothing more.

LAYOUTS OF WIDGETS?
The idea of Custom Layouts described before has some
similarities with the existing widgets dedicated to work as
containers, like the classes of Qt ItemViews or ItemViews-NG (a
research project in Qt Labs).

A container widget is a widget focused in displaying a set of data
(in Qt usually this data is available through a Model class). The
most common container widgets are lists and grids that create
visual representations once given the data representing their
elements.

These representations can be customized, by using factories of
widgets for handling elements, in Qt4 the factories are called
delegates, and in ItemViews-NG they are item creators. The
factory creates a visual element for a given piece of data.

If you think about the previous Canola Layout example, assuming
that we have a list of icons and that items would be represented by
those icons,

a different implementation could be: to use the same engine as
before, but implementing a container widget. The parent
(container) widget would accept a list of icons and use a factory to
create the necessary children widgets.

Other examples of container widgets are:

• a taskbar: the data is the window information, and the factory
creates buttons to represent that window;

• a grid of photos: the data is a list of pictures, and the factory
creates a widget that can show one of these pictures.

• a list of songs: the data is a list of song objects, and the
factory creates a widget that show selected information from
song objects.

Note that when using those specialized container widgets, you can
abstract away the presentation elements -- and even encapsulate
them in the container widget. The focus is to provide the correct
data so the view will show it correctly. This separation is present
in both Qt4 and ItemViews-NG and allows to easily swap the
visual representation.

3

July 3 to 11 2009 ~ Las Palmas, Gran Canaria, Spain

Akademy 2009 ~ Technical Papers

The similarities with layouts lie mostly on the fact that both
Layouts and Container Widgets are responsible for positioning the
children on the available screen space. However, the layout is just
that, while the container widget is a more complex entity.

Essentially, it is possible to derive a Container Widget from a
Layout and a Factory that is capable of converting model
information into proper widgets. Using layouts is more adequated
in the case that the model information is complex enough that it is
better encapsulated in widgets. For example, a complex taskbar
integrated with a notification area API, in which the different
windows would be represented by custom widgets. In this case a
layout is more fit to the job than making a widget that accepted
other widgets as models.

Sometimes you can both create a custom layout or create a custom
container widget, for example, the Canola Layout previously
shown, could be designed as a parent widget that set the children
position using the same engine as the layout. If the application
does not need arbitrary widgets in the Canola grid, the parent
widget could simply have a method to add a new item for a given
image, or even having this information in a separated model.

The solutions provide different benefits, the layout can be reused
in other contexts, with arbitrary widgets; on the other hand the
container widget can provide specialized ways to add children and
can result in a simpler code if the children widgets are all similar.

MULTIPLE LAYOUTS
In rich UI applications, designers try to make application events be
represented in a nice way on the screen. This usually requires
widgets to grow, shrink and move around, into or out of the
screen.

As a result we have that, while a given layout can suit the
distribution we need in some situations, the same may not be true
when a change in the items distribution is required. In that case,
we may need not one, but several layouts, one for each
distribution. In other words, we would like a group of layouts to
swap among.

Unfortunately though it was not easy to swap between layouts in
Qt. In the following subsections we explain the most important
changes made to make that possible and fulfill the requirements
set.

From Qt Software we had two important requirements. The first
was not to break binary compatibility, this is only acceptable
between major release versions. The second was to support
existing third-party layouts, rather than simply modifying the
built-in Qt layouts to support the new functionality.

The Desired Usage
Our goal was to be able to create all the layouts we wanted
only once and then use them appropriately, talking high
level, see the following example:

Setup:

• Create the items of my screen (two buttons, a text box,
etc).

• Create the first layout (a linear layout, for instance).

• Fill the first layout with the items in the correct order.

• Create the second layout (a grid).

• Fill the second layout with the same items, in a
different distribution.

Usage:

• Apply the first layout.

• When needed, take the current layout out of the widget
and apply the new one, repeat.

Taking a Layout from QgraphicsWidget
In the existing versions of Qt, there was no way of
removing a layout from a QgraphicsWidget without
causing it to be deleted. The same is true for QWidget
class, which is out of the scope of this document. Therefore,
if one wanted to keep switching between two layouts, he
would have to keep iterating on the following process:

• Create a new layout.

• Add widgets to it.

• Apply the new layout in the widget (causing the
deletion of the previous one).

This was not practical nor elegant. That's why we added the
QGraphicsWidget::takeLayout() method to
remove a layout from a widget without deleting it.

Adding an Item to Several Layouts
At that point we had the ability to remove a layout from a
widget to reuse it later. However, we still could not create
several layouts and keep them ready to use.

In order to do that, we would have to add the same set of
widgets to more than one QGraphicsLayout at the same
time, what was not possible in Qt. Talking to the developers
at Qt Software, we came up with the solution of creating a
new kind of layout element that would act as a proxy
between the actual widget and the layouts.

The idea was to create several layout proxies and have all
of them pointing to a single QGraphicsWidget, then we
would add the proxies to the different layouts (one proxy in
each layout) instead of trying to add the same widget to
more than one layout.

For example, we would like to add a button to both a linear
layout and a grid layout. In order to that we now create two
proxies, add one of them to each layout and finally, have
the proxies pointing at the shared button widget.

While that is not as straightforward as simply adding the
same buttons to several layouts, this approach required less
intrusive changes in Qt and supports existing layouts, as
explained earlier.

Animation Between Layouts
We were already able to switch between layouts, and that

4

July 3 to 11 2009 ~ Las Palmas, Gran Canaria, Spain

Akademy 2009 ~ Technical Papers

was good. However there are the designers, and with them,
the question: “OK, you have two layouts, but it is so ugly to
swap them at once! Can't you just ask them to animate
too?” “Sure..., we said.

The idea once again was to add animation support to all
existent layouts,thus modifying QGraphicsLayout
instances was not an option. The solution was to add
animation capability to the same proxies that allowed us to
solve the previous issue.

Proxies were then blessed with QAnimations, and so
their task became slightly different. They were then
responsible for running an animation between the current
item geometry and the new one, rather than simply
forwarding the setGeometry() call as they used to do.

LAYOUTS IN DECLARATIVE UI
At the time of this writing, the layouts available for use in
Qt Declarative UI are not compatible with
QGraphicsWidgets. Instead, they are based on an
alternative item class called QFxItems, which is out of the
scope of this document.

Declarative UI is under heavy development and work is
being done with regard to the addition of standard
QGraphicsLayouts support. In the following sections
we assume this will be ready in the short-term future. We
understand that support for both Flexible and Custom
layouts should be available in Declarative UI.

To enable the use of Flexible layouts we must ensure that
there is proper API to configure such layouts. To declare
the anchors, for instance. Custom layouts on the other hand,
are implemented as third-party classes. This means that
Declarative UI files must support custom keywords and
custom user classes for the latter to work.

Property Propagation
The Qt Declarative UI project introduced a powerful feature
called Property propagation. It allows users to associate
script expressions to object properties. This means that
properties like transparency, color, position and size, that
otherwise would be attributed fixed values, can now be
bond to a mathematical expression involving values from
other items' properties and constants, to be constantly
evaluated.

Such feature can be used to bind one item's behavior to
those of others. For instance, one item can be set to follow
the color of another one. Or else, its size can be defined to
be the sum of the sizes of other two. In the layouting
context, property propagation can be used in a similar
fashion to how Anchor Layout is used, it is easy to simulate
part of the features of the anchors by setting the geometry
properties of the items involved.

In Declarative UI there are properties that define the X and

Y position of an item. Once we define that an item has its X
position equal to the right edge of another item, we have
created an anchor. Similarly, we can define the width of an
item to be equal to 2/3 the size of another item. That is how
Edje's parametric layouting system work.

So, how do we compare that to the layouts we explained
before? These methods are complementary, with the
following differences:

Real layouts:

• A separate entity that takes care of the items.

• Only handles geometries.

• Uses a specialized C++ implementation.

Property propagation:

• No external entities are required.

• Handles anything that can be exported as a property.

• Implemented using Qt Script and recursion.

From those differences it is important to note that for some
uses like binding colors, transparencies, states and
everything apart from geometries, property binding is the
solution. When it comes to geometries though, some care
must be taken.

By using a specialized implementation, layouts can be
faster and more powerful than properties. When using
property propagation to bind together the geometries of
several items, it is easy to follow in a circular dependency
problem or to loose track of the intended setup.
Furthermore, the code can become hard to maintain with
geometry constraints spread among the declaration of
distinct items. In such cases, having an entity whose only
task is to manage geometries is a faster, more maintainable
and more scalable solution.

CONCLUSION
From our experience with Qt Layouts, we understand that
these layouting tools can be used in existing and new KDE
applications in order to improve their appearance as well as
the user experience they provide.

Part of our current work is being integrated right into the Qt
main repository. We are also working on examples based
on real KDE applications that can benefit from such tools
and will release them as soon as they are ready.

ACKNOWLEDGEMENTS
The content exposed in this paper result from the
cooperative work that has been done by the authors together
with their co-workers at the openBossa labs and the
developers from Qt Software.

We would like to thank everyone that contributed to this

5

July 3 to 11 2009 ~ Las Palmas, Gran Canaria, Spain

Akademy 2009 ~ Technical Papers

work. In special the KDE e.V. for their support, our co-
workers Anselmo Lacerda Silveira de Melo, Artur Duque
de Souza, Jesus Sanchez-Palencia and Renato Chencarek.
Thanks also to those at Qt Software: Andreas Aardal
Hanssen, Jan-Arve Sæther and Alexis Ménard.

REFERENCES

1. OpenBossa Labs. http://www.openbossa.org

2. OpenBossa Channel on YouTube.
http://www.youtube.com/openbossa

3. Qt Software. http://www.qtsoftware.com

4. AnchorLayout in Gitorious. http://qt.gitorious.org/
+openbossa-developers/qt/openbossa-
clone/commits/anchorlayout

5. Canola Layout.
http://www.youtube.com/watch?v=eJcTBJaPRZg

6. Eduardo Madeira Fleury’s Blog.
http://eduardofleury.com

7. Linear Programming.
http://en.wikipedia.org/wiki/Linear_Programming

8. Ivan Cukić post on NodeLayout.
http://ivan.fomentgroup.org/blog/2007/10/13/nodelayout-
for-plasma/

9. Lancelot Application Launcher.
http://lancelot.fomentgroup.org

10. Enlightenment Foundation Libraries.
http://www.enlightenment.org/p.php?p=about/efl

6

July 3 to 11 2009 ~ Las Palmas, Gran Canaria, Spain

file:///home/seele/Documents/Akademy Technical Papers FINAL/http://eduardo?eury.com
http://www.openbossa.org/
http://www.enlightenment.org/p.php?p=about/e%EF%AC%82
http://lancelot.fomentgroup.org/
http://ivan.fomentgroup.org/blog/2007/10/13/nodelayout-for-plasma/
http://ivan.fomentgroup.org/blog/2007/10/13/nodelayout-for-plasma/
http://en.wikipedia.org/wiki/Linear_Programming
http://www.youtube.com/watch?v=eJcTBJaPRZg
http://qt.gitorious.org/+openbossa-developers/qt/openbossa-clone/commits/anchorlayout
http://qt.gitorious.org/+openbossa-developers/qt/openbossa-clone/commits/anchorlayout
http://qt.gitorious.org/+openbossa-developers/qt/openbossa-clone/commits/anchorlayout
http://www.qtsoftware.com/
http://www.youtube.com/openbossa

